COMMUNICATION

AN EVALUATION OF STARCH OBTAINED FROM PEARL MILLET - Pennisetum typhoides. AS A BINDER AND DISINTEGRANT FOR COMPRESSED TABLETS

O.F. Akande, A.V. Deshpande and A.B. Bangudu Department of Pharmaceutics and Pharm. Microbiology Faculty of Pharmaceutical Sciences Ahmadu Bello University Zaria, Nigeria

ABSTRACT

binding and disintegrant properties of millet starch obtained from Pearl Millet Pennisteum typhoides (Staph. Burn. and Hubb.) Fam. Gramineae have been evaluated using tablet formulations of four drugs.

showed that Millet starch with Maize starch with regards to favourably the parameters used to evaluate the tablets. safely concluded that millet starch is suitable for use as a binder and disintegrant in tablet formulations.

INTRODUCTION

is a naturally occuring substance of distribution and an important adjuvant in the formulation and production of tablets. Starches derived from

wheat, rice, corn (maize) and potato have been accepted by the British Pharmacopoeia and are used in tableting as diluents, binders, disintegrants and lubricants.

1,2,3,4 Several workers have investigated various starches for their binding and disintegrant properties.

Pearl millet, a cereal grain, is an important food is extensively grown in the savannah of Nigeria. Work on millet starch regions excipient has not been reported the this study, we have extracted starch literature. Ιn grains and compared its properties from millet tablet binder and disintegrant with those of starch B.P.

MATERIALS

Sulphadimidine and Maize starch B.P. (M Dagenham, England), Chloroquine phosphate (Bayer, India LTD.), Calcium carbonate, Sodium bicarbonate and Talc England), (BDH chemicals Ltd., Poole, Magnesium stearate (Hopkin & Williams Ltd., Essex, England), and millet starch prepared in our Laboratory.

METHODS

Preparation and Analyses of Millet Starch

white starch was obtained prime grains after it has been wet-milled, millet (seeds) ground in a blender, centrifuged and filtered The particle size of the millet times. determined by optical microscopy.

Formulation studies

drugs; calcium carbonate 500mg and bicarbonate 500mg - inorganic, insoluble and sulphadimidine 500mg and chloroquine phosphate drugs, 250mg - organic, insoluble and soluble drugs respectively were used in the formulation of tablets.

Starch paste (10% w/w) was used as binder for formulations, while 10% w/w and 5% w/w dry starch the were used for the insoluble and soluble drugs respecti-0.25% w/w of a (1:1) Talc vely as disintegrant. Magnesium stearate mix was used as lubricant for formulations except the chloroquine phosphate formulations where 1% w/w of the lubricant was used.

granulation method by massing The wet. and was used for the granulation with starch as internal disintegrant. The granules dried in a hot air oven, at 40 C for 4 hours.

Analyses of the Granules

Erweka Granule Flowability Tester was used to determine the flowability of the granules. The tapped bulk densities of the granules were also carried particle size distributions of the granules out. The were measured by sieve analysis.

Compression of Tablets.

Granules of size range 150um - 1.00mm were compressed into tablets using suitable punches and die sets.

Evaluation of Tablets

The hardness. friability and disintegration time all the tablets were carried out immediately after compression. The dissolution rates of the organic drug tablets were also determined. Similar tests were carried out on the tablets after 3 months of storage.

RESULTS AND DISCUSSIONS.

size of the millet starch particles - 14.7um with a mean of 8.8um.

made from both starches had similar flow Granules tapped and bulk densities. All the granules had good flowability.

The mean hardness and friability values of tablets from both starches before and after storage were disintegration time results showed that The produced with millet starch had shorter tablets disintegration times than those produced with starch. This seems to suggest that the millet better disintegrant property than the maize as similar quantities of the starches were used in the formulation.

The dissolution profiles of tablets were basically similar for all starches and drugs. The T50 values were rapid and shorter for the millet starch tablets those formulated with maize starch. There was a direct correlation between the disintegration time and the time required for 50% of the drug to dissolve.

There were slight decreases in the mean of all the tablets after 3 months of storage. This may due to the high relative humidity of Zaria within the period of rainy season. The friability values also increased slightly, apparently due to the decrease hardness. There were no significant changes in disintegration times and the dissolution rates of the tablets after 3 months of storage.

CONCLUSIONS

From the parameters studied, Millet starch has found to be suitable in tableting as binder and The millet starch compared favourably disintegrant. with maize starch with respect to the physical properties of the granules and tablets including the rate of dissolution of the active ingredients for the organic The tablets did not change significantly drugs. storage, and the drug release was found to be the same.

REFERENCES

- R.P. Patel and G.J. Joshi, Indian J. Pharm. 21, 136 (1959).
- R.N. Nasipuri, Pharm. Acta. Helv.54, Nr.2, 48 (1979).
- 3. S. Esezobo and V. Ambujam, J. Pharm. Pharmacol. 34, 761 (1982).
- 4. A.V. Deshpande and L.B. Panya, J. Pharm. Pharmacol. 39, (6), 495, (1987).

